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Target density and MCMC

Recall that given a density π(x) – which we think of as a target density
(e.g. a prior density or a posterior density) from which we want to make
simulations – a MCMC algorithm is a way of constructing a Markov
chain X0, X1, . . . to produce such simulations (at least approximately).

Today we provide the theory ensuring that this works: we discuss
conditions ensuring that π becomes the limiting density π, that is, for
any event A we have

P (Xt ∈ A) →

∫

A

π(x)dx as t → ∞.

NB: Here and in the following we assume π is a probability density
function, but everything works as well when it is a probability mass
function (then just replace integrals by sums) – or a density for a
combination of discrete and continuous random variables...
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Invariance

Definition: Invariant density

A Markov chain with transition kernel P (x,A) has invariant (or
stationary or equilibrium) density π(x), if for all events A ⊆ Ω,

∫

Ω

π(x)P (x,A)dx =

∫

A

π(x)dx.

In other words, if at some time t we have that Xt has density π, then
Xt+1 has density π, and hence at any time s ≥ t we have that Xs has
density π.

It can be shown that if the Markov chain has a limiting density π, then π

must be an invariant density of the Markov chain.

Bayesian statistics, simulation and software Jesper Møller and Ege Rubak



4/18

Invariance for the Metropolis-Hastings algorithm

Theorem

The Metropolis-Hastings algorithm produces a time homogeneous
Markov chain with its target density π as its invariant density.
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Irreducible

Definition: Irreducible Markov chain

A Markov chain with invariant density π(x) is irreducible if for all states
x ∈ Ω and all events A ⊆ Ω with

∫

A
π(x)dx > 0, there exists a time

n ∈ {1, 2, . . .} so that
Pn(x,A) > 0.

Otherwise it is said to be reducible.

Briefly speaking this means that for any feasible event A, no matter at
which state x the Markov chain is started, it is possible within a finite
time that the Markov chain reaches A.

FACT: If the Markov chain has a limiting density π, then the Markov
chain must be irreducible!

Theorem

An irreducible Markov chain has a unique invariant distribution.

FACT: So if a Markov chain has a limiting density π, then it is the unique
invariant density!
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Metropolis-Hastings algorithm

Theorem

If for all states x, y ∈ Ω, we have q(x, y) > 0 whenever π(y) > 0, then
the MH algorithm produces an irreducible Markov chain and π is its
unique invariant density.

Remark: We return later to what is needed extra in order to ensure
convergence of the distribution of Xt towards π. In fact, as we shall soon
see, irreducibility is effectively all we need in order to use Monte Carlo
estimates!

Remark: It follows that for a Gibbs sampler simulating from a positive
density, that is, π(x) > 0 for all x = (x1, . . . , xk) ∈ Ω = Ω1 × . . .× Ωk,
we have irreducibility and so π is the unique invariant density.
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Example

Consider a target density

π(x) =
1

2
· 1

[

|x+ 1| ≤
1

2

]

+
1

2
· 1

[

|x− 1| ≤
1

2

]

.

0 1 2−1−2

π(x)

x y

δ

Consider a random walk Metropolis algorithm with a uniform proposal
density centred at the current value:

q(x, y) =
1

2δ
1 [|x− y| ≤ δ] .

Indeed this proposal density is symmetric in x and y: q(x, y) = q(y, x).

Notice: Irreducible if and only if δ > 1.
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Example — cont.

δ = 0.5
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A strong law of large numbers

Theorem: Strong law of large numbers for Markov chains

Consider an irreducible Markov chain with π(x) as its invariant density,
and a function h : Ω → R so that the mean µ =

∫

h(x)π(x)dx exists.
For any m ≥ 0 (the burn-in, i.e. the time we start to keep samples),
define the sample mean

µ̂n =
1

n+ 1

m+n
∑

t=m

h(X(t)).

Then there exists a set C ⊆ Ω with
∫

C
π(x)dx = 1 so that for all x ∈ C

P (µ̂n → µ as n → ∞|X(0) = x) = 1.

The estimator µ̂n is a so-called MCMC estimator of E[h(X)].

We say much more about the burn-in later.
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Example

� Setup: Assume X is distributed as before:

0 1 2−1−2

π(x)

� Question: What is the probability P (X ≥ 0)?

� Notice that P (X ≥ 0) = E [1[X ≥ 0]] (= 1
2 of course).

� Accordingly, let h(x) = 1[x ≥ 0].

� Solution: Generate a realization x(1), x(2), . . . , x(1000) of the Markov
chain with a proposal density as before so that irreducibility is
ensured .

� An MCMC estimate for P (X ≥ 0) is then

µ̂1000 =
1

1000

1000
∑

i=1

1[x(i) ≥ 0].
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Example cont.

Plot of x(t)
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Periodicity

Definition: Periodicity and aperiodicity

An irreducible Markov chain is periodic if there exists a partition
Ω = A0 ∪A1 ∪A2 ∪ · · · ∪Ak (so Ai ∩Aj = ∅ whenever i 6= j), where
∫

A0

π(x)dx = 0, k ≥ 2 and

� x ∈ A1 ⇒ P (x,A2) = 1,
� x ∈ A2 ⇒ P (x,A3) = 1,

�

...
� x ∈ Ak ⇒ P (x,A1) = 1.

The Markov chain is aperiodic if it is not periodic.

Theorem

If P (x, {x}) > 0 (that is, Xt+1 = Xt may happen with a positive
probability), then it is an aperiodic Markov chain.
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Example

Consider again the target density

π(x) =
1

2
· 1

[

|x+ 1| ≤
1

2

]

+
1

2
· 1

[

|x− 1| ≤
1

2

]

.

0 1 2−1−2

π(x)

xy

Consider the proposal density

q(x, y) = 1

[

∣

∣y + sign(x)
∣

∣ ≤
1

2

]

.

Accordingly:

� If x > 0, then y ∼ Unif([−1.5,−0.5]) and a(x, y) = 1.

� If x < 0, then y ∼ Unif([0.5, 1.5]) and a(x, y) = 1.
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Periodicity: Example cont.

Thus the Markov chain is irreducible but periodic (switching between the
intervals [−1.5,−0.5] and [0.5, 1.5]):
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Law of large numbers still “works” (since the Markov chain is irreducible):
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Periodicity: Example cont.

Since the Markov chain is periodic
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it does not not converge towards a limiting distribution:
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Markov chain convergence theorem

Theorem: Markov chain convergence theorem

For an irreducible and aperiodic Markov chain with invariant density
π(x), there exists C ⊆ Ω, so that

∫

C
π(x)dx = 1 and for all x ∈ C and

A ⊆ Ω we have

P (Xt ∈ A|X0 = x) →

∫

A

π(x)dx as t → ∞.

In other words, no matter where the chain starts (except in the
”π-nullset”C), as the time t goes along, the distribution of Xt converges
towards the target distribution with density π.

If the Markov chain is Harris recurrent (this technical concept is not
defined in this course), then C = Ω (so no worries about if we started
outside C).
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Convergence: Example

Consider the irreducible and aperiodic chain from earlier (δ = 2):
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Clearly, this Markov chain does converge:
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Convergence: Example cont.

When X0 = 1, from the top left to the bottom right, 1000 replicates of
X0, . . . , X11, respectively:
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